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An Invariant Infinitesimal Theory of Motions

Superposed on a Given Motion

by

J. Casey and P. M. Naghdi

Abstract. This paper is concerned with the construction of an invariant
infinitesimal theory of motions superposed on a given motion. --The development
i. applicable to any material but special attention is given to elastic sulids.
Included as a special case is an infinitesimal theory of elasticity with the
following properties: (1) It is properly invariant under arbitrary (not
ii-cescarily infinite-simal) superposed rigid body motions, (2) it reduces by
specialization to the theory of rigid bodies undergoing finite motion, and
(3) it can be brought into correspondence with the classical linear elasticity
thruu !rh a Suitable reinterpretation of the symbols in the constitutive equatiun
,)f the latter.
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1. Introduction

The theories that describe the finite deformations of continuous media,

most notably the theory of finite elasticity, all satisfy correct invariance

requirements . In contrast, as is well known, the classical theory of inifinitesi-

mal elasticity does not satisfy correct invariance requirements; the theory of

infinitesimal deformations superposed on a finite deformation is not an

invariant theory either . A further example of a theory of practical importance

that does not satisfy correct invariance requirements is that of "physically

nonlinear" elasticity in which the deformation is assumed to be infinitesimal,

while the constitutive equation is nonlinear in the infinitesimal strain.

Statements have occasionally been made in the literature -- with evident

justification--regarding the physical meaninglessness of infinitesimal theories

which fail to satisfy full invariance requirements, it being pointed out that

such theories could not possibly apply to any material undergoing finite

deformation. The purpose of this paper is to introduce an invariant infinitesi-

mal theory of motions superposed on any given motion. This includes, of course,

as a special case an invariant infinitesimal theory. While our method of

approach and all of the kinematical and kinetical results hold for any material,

we devote special attention to elastic solids.

tBy this we mean invariance requirements under superposed rigid body motions,

which embody the idea that all motions of a body which differ only by a rigid
motion are mechanically equivalent. We do not employ here the principle of
material frame-indifference (or material objectivity) which is used by some
authors as an alternative to invariance requirements under superposed rigid
u.dy motions.

$It is rather disconcerting that an infinitesimal theory of a deformable medium
(such as the classical infinitesimal elasticity) does not include as a special
case that for which the deformation is zero, i.e., the theory of rigid bodies.

(,re Coleman and ioll (1961, p. 245) and Truesdell and Noll (1965, p. 117).
Reference may ilso oe made to a related remark by Truesdell and Toupin
(196?, p. 724).

1.



1.1 Examination of the usual infinitesimal theory

The main reason that infinitesimal theories do not satisfy invariance

requirements, which are met by the finite theories, lies in the different

behavior exhibited by the infinitesimal and the finite strain tensors when an

arbitrary rigid motion is superposed on a given motion of a body (B. To elaborate,

recail that the finite (relative) strain tensor defined by E= 1(C- I), where C

is the Cauchy-Green measure of, deformation and I the identity tensor, is

invariant under superposed rigid body motions. A consequence of such invarialck.

iF' that E must take on a constant value for all rigid motions of (B; by cho~ice

it is arranged in the definition of E that this constant value be zero. Under

certain conditions, the infinitesimal strain tensor e furnishes a linear approxi-

mation to E and is used in constitutive equations intended to describe the

mechanical response of certain materials. This inevitably leads to the fol-

lowing difficulties: (1) the only rigid motions for which e equals zero are

the translations, and (2) the strain e is not invariant under arbitrary super-

posed rigid motions of the body (B. Indeed, if contrary to (2) the tensor e

were invariant under arbitrary superposed rigid motions, then it would be zero

for all rigid motions and this would contradict (1).

To illustrate points (1) and (2), consider the classical linear theory of

elastic solids whose constitutive equation relative to a homnogeneous unstressed

reference configairation 0 K can be written as

2.



T p te] , (1.1)

where K[el is linear in e, T is the Cauchy stress tensor, , is a constant

fourth order tensor and op is the mass density of the body B in configuration

K. When an arbitrary rigid motion is superposed on X, resulting in a motion

X it is generally regarded as a physically acceptable assumption that the stress

vector t (representing surface force per unit current area) be unaltered apart

from orientationt . As a consequence of this, the Cauchy stress tensorT + in

+

the motion X is related to the stress tensor T in the motion X by

+ OT

T+ =QTQT (1.2)

In (1.2), Q is a proper orthogonal tensor function of time which corresponds

to the rigid rotation in the superposed motion, and Q is the transpose of Q.

For the special motion in which the body S remains always in its reference

configuration, e= 0 and hence T= 0 by (1.1). Then, if (1.2) were satisfied, T

should equal zero for all rigid motions. However, if we use the definition of

infinitesimal strain e [see Eqs. (2.8)1 and (2. 1 4 ) 5 ] , we see that the value of e

in a rigid motion is

T  (Q_ 5T(+ (q
2 =Q 1 + . . I -1 ) (1 3 )

Hence, in view of (1.1), in a rigid motion we have

2.= op Y[((Q-IQ-) (1.4)

which contradicts the result noted above. On this account in the classical

linear theory of elasticity it is stipulated that only rigid motions which are

themselves infinitesimal be allowed to enter the theory, because e given by

(1.3) is approximately zero for such motions; and, in turn, T given by (1.4)

tSee Green and Naghdi (1979) for the motivation and precise meaning of this
terminology.
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is approximately zero also. Thus, we see tnat the usual method of constructing

the infinitesimal theory of elasticity--which results in the choice of - as a

strain measure -- forces us to exclude the class of finite rigid motions from

the theory, despite the fact that general physical considerations [embodied in

Eq. (1.2)] require that T =0 for all rigid motions.

The discussion in the preceding paragraph pertains to the effect of a

purely rigid motion. We now turn to a related examination of the constitutive

equation of a linearly elastic solid when a rigid motion is superposed on a

given motion. To this end, we observe that even if e were zero for all rigid

motions it would still seem undesirable that e be altered under arbitrary super-

posed rigid motions. For, if e is used as an ingredient of the constitutive

equation characterizing the mechanical response of a material, the resulting

theory will then predict that the response should in general change when the

body is imparted an arbitrary (i.e., not necessarily infinitesimal) superposed
+

rigid motion. It is easy to show that if X and X differ only by a rigid motion

then the measure e calculated for the motion X +is related to the measure e

f~r the motion X by the equation

2e 2e - (Q-I) (Q- . (-,i) - ) + (q-I)(F-I) T (1.5)

where F is the deformation gradient in the motion X. Utilizing (1.1) and (1.5)

+
we find that the Cauchy stress in the motion X may be expressed as

e+ T- -k ,- T )] + p[(Q-I)(F-I)+{(Q-I)(F-I) T ]  (1.6)

with the constant tensor X remaining unaltered for a given material. However,

if we use (1.2) and (1.1), we are led to the relation

T + (O..TT+ T(Q-I )T+ (Q-I)T(QI)T

: T+ p(Q-I)K[e] + ((Q-I)X[e])T +(Q-I)X[e](Q-I)T3 (1.7)

The right-hand -il:!s of (1.6) and (1.7) are in general unequal and consequently

T+ Is not given by ([e+ ] as it ought to be. Furthermore, this behavior will be

reflected mathematically in the failure of the differential equations of motion

_____________________________ 1



to transform correctly into the equations describing motions which differ from

a given motion only by a rigid motion. Of course, if both (F-I) and (Q-I) are

taken to be negligible in (1.5), (1.6) and (1.7), then these equations yield

the approximate relations

and hence the result

+ +'9
T ;z p X[e (9

The latter procedure is the one adopted in the classical theory of (infinitesi-

mal) elasticity. It is then said that the infinitesimal strain tensor is

invariant under infinitesimal superposed rigid body motions and that the

constitutive equation (1.1) is ir ,ariant under infinitesimal superposed rigid

body motions. An analysis that parallels the foregoing can be carried out for

the usual theory of infinitesimal deformations superposed on a given deformation

1.2 Nature of results for a properly invariant infinitesimal theory

The construction of an invariant infinitesimal theory is effected here by

the simple device of first removing from any given motion X the translation and

rotation at any one particle Y of (B, called a pivot in section 3, arriving thereby

[lsee Eq. (3.2)] at a motion X*. The invariant behavior of the finite strain

tensor E implies that the finite strain tensor E in the motion X takes on the

same value as E at corresponding values of their arguments. We next assume

that the displacement gradient of X is small. The linear approximation e to

E is the measure upon which our infinitesimal theory is based. As shown in

section 3, the strain tensor e is invariant under arbitrary superposed rigid

body motions of (B and takes on the value zero for all rigid motions of (B.

See Sec. 68 of Truesdell and Noll (1965), where additional references can be
found.
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Within the framework of the present paper, the constitutive equation of a

linearly elastic solid takes the formt

T = op R(Yt),[e*] ]T (Yt) , (1.10)

where R(Y,t) is the rotation tensor at the particle Y at time t. When X is

@
transformed into X by an arbitrary superposed rigid motion of (B,

:(Y,t)R+ (Y,t + ) Q R(Y,t), e =e =e and is given by

T+ + . * + + TT = op R (Y,t ) )[e ]R (Y,t+)]

* }T
= pQR(Yt)[e][ QR(Y,t))

=QTQT

that (I.10) is indeed an invariant constitutive equation. Recalling (1.2)

*
we denote the Cauchy stress tensor in the motion X by

ST
T = (Y,t)TR(Y,t) ,(1.12)

in which case (1.10) takes the appealing form

T = op [e*] . (1.13)

Happily the last equation is identical in form to (1.1), which allows the

inlr.it-2simal theory of section 4 to be brought into direct correspondence

witL trio (classical) linear theory of elasticity by a simple reinterpretation

cf the symbol.; ,mployed in the latter theory. We emphasize that, in contrast

t, (1.1), the constitutive equation (1.13) is invariant under arbitrary super-

p-S. I rigid moti ons of (B.

The conceptual advantages of an approximate theory based on the strain

me,sure e rather than on e lies in the fact that such a theory is properly

We emphasize that for a particular choice of pivot, Y is fixed in (1.i0)
and H(Y,t) varies with time only.
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invariant under arbitrary superposed rigid motions, rendering the results

physically meaningful, and that the theory includes as possible motions the

entire class of rigid motions. In effect, by following the scheme outlined

above, we are able to approximate the finite theory while keeping the invariance

requirements intact. It is precisely the fact that the invariance requirements

are themselves approximated in the classical infinitesimal theories that leads

to the shortcomings of these theories mentioned earlier. While the usual method

of linearizing a finite theory involves the systematic approximation of every

equation of the theory, our results demonstrate that, if meaningful physical

results are to be derived, it is essential to distinguish between invariance

requirements which are to be kept intact, and the remainder of the finite

theory which may be approximated. Indeed, by first removing (from all

p~irticles of the body) a rotation and translation from a motion X and then

performing approximation, the present method (sections 3 and 4) yields a

properly invariant theory.

1.3 Outline of contents and additional remarks

Sections 2 and 3 are concerned, respectively, with some preliminary back-

ground material and the construction of an invariant infinitesimal strain

measure. Some aspects of these make use of the notions of equivalence relations

3nd equivalence classes, the relevant details of which are elaborated upon in

Appendix A of the paper (following section 5). Using the results of section 3,

an invariant infinitesimal theory of motions superposed on a given motion is

developed in section 4 and begins with two independent motions 1X and 2X of the

same body composed of the same material. Removing from both motions the trans-

lation and rotation at any one particle Y of ~B while maintaining the same stretch,

we arrive at two motions 1X and 2X This is followed by introduction of the

gradient H of the relative displacement field A -ly taken, at each instant of

time, with respect to the configuration occupied by B in the motion X at that

instant. The gradient H is unaltered when rigid motions are superposed on either

)or 2X' or both. We next assume that H is small and we derive a relationship

1.~1.- 2F 000am



:e Eq. (4.31')] between the 'eucny stress tfos.rs fur tne motior-s x  and

wic: :s properly invariant undvr arbitrary superposed rigid body motins.

!i; i, our main resut a

is., t-d erlier in this section, our method of cor.struction involves the

remcval from all motions the translation and rotation at any particle Y. In

s- ... . we examin- the nature of the results it. section 4 when a pivot Y'

-.I!i itc-id -f Y. it i-vh.ln that the infinitesimal theory -unstructed

., e. - iuet cincide., to within terms of o(C2 , with th-t cunutructed

S: - i:-t Th -ifi cance if this result is that it du'es not matt.r

-n . p4V t

- ft.siru t. stin, it il desirable to comment on a recent paper

-, -,; rrin 'I ,'r j r1-,arting the impossibility of an exact linear

.t.ry for elastic sicds. These authors consider a constitutive

form T - C i , a(2 is a constant fourth order tenser and

-ispl-cemeri .p'dienit. In the theories of finite deformation

qired that det(H+I)> ; and, hence, H is restricted to belong to some

.l 'f the set of all second order tensors . Under superposed rigid

*: ' ey .(2 ,, while H is transformed into H% F 1
;,c"" t { b ~ s t") ,q since> feor I

_ .rinc det(H +" (det Q)det(H+I)>O for

' po r orthog<ona_ Q. It is readily apparent that the constitutive

U, P 1 1, E P, could not enerally be properly invarinnt under

.v:[:: , slorpc~sed riid todv moticris. Indeed, setting H= 9. it folbow-

_ f ,r iiL proper crtho:c.-ial Q. The only (2 for which this is

"t Ho; e. -lopmnt, Fosdick and Serrin place a stronger a priori restric-

A , I ta requires H to belong to some subset g), of Y). If V is a proper

.), t,hun oal ri.:: .i ure allowed to appear in the inva riance reluar (,'f,.

-.. , t,iun that ;f' Fosdiek and Serrin (1979). in the prtsent .ut r,
... .. n i ;ng Juantit -,j denoted by G.

8.



that result in H Q H+Q- I also belonging tu '. In accommodate this restric-

ti, on the choice of Q, Fosdick and Serrin (1979) replace the invariance

requirements of the general finite theory with rertricted invariance require-

rents which involve some proper subset of the -t or proper orthogonal tensors. it

may conceivably transpire that the 'onstitutive equation T=a[1.1, with !{,!{ _ s

thlen possible for non-o.ro U. Fosdick and errin chow that thi,: is ii ct i

thie case and C1 must still, be zero.

In contrast to Fosdick and Serrin (1979), the point of view take*n in the

present paper is that there are compelling physical i-7ounids for retaining the

full set of proper orthogonal tensors in the invariance requirements of any

tneory of deformaoale media, including the approximte theories. Thus, the

domain of a constitutive response function must be large enough to include all

those tensors (e.g., F+ ) derivable from any tern Kr in the domain (e.g., F) by

a superposed rigid body motion with Q an arbitrary proper orthogonal tensor.

It is then a consequence of the development of thot present paper that a linear

constitutive equation of the form (1.13) is physically meaningful, in that it

satisfies full invariance requirements.

9.



2. CGneral background. Preliminaries and notation

,'onsider a body . which, in a fixed reference configuratiun K, Uccupies I

ret"r, n embedded in a three-dimensional Euclidean space P; we denfote the

nuunidary of oR by 0R . Choosing a fixed origin ( in P-, we identify each particle

X I' cB Uy the position vector X of the place it occupies in R. A moti~ri )f 4B i"

a mapping X which assigns a position vector x=X(X,t) to each particle X Dt each

instant t of time (-c<t<m). In what follows, we need to consider three sep-:rate

m.tions of the body; and,for this purpose, we introduce the notation

x = X(X,t) ( =o,1,2) , (2.1)

w- x -X. 'S'tatements involving X are understood to hold for values o,1,2,

c- find it cnvenient to spea f X in the singular. Thus, we say that the

i' ' e f in the motion X will be denoted by R= X(G R,t). The moticn

Ai. YrX t) in which X remains . f, all t is called the identity motiin.

, x= K(X) and R -- K . s 1z-.< analysis of motions superposed .r

a ,ive. :oior, X will represent the given motion and X a motion that is clos;e

tc X -n a sense to be made precise inter. We assume that at each fixed t, the

s ' it,- into R by (2.1) possesses a smooth inverse denoted by X -
. Under

essu otions, t is also a region with boundary R X(b R,t). Clearly,

. identity motion is its own inverse. The current configuration of B at each

x-l t in the motiun X is the mapping K of (B into - given by K X K, wheru

S L:-niies ~ te composition of mappings For any subset (or part) 9-( of the

A region L. regarded here as a nonernty connected and compact subset of -
tsving - piecewi,;e smooth boundary.

it we;l. be more correct if in our notation we distinguished the mapping X

from the ofartial mapping ? t which at each fixed t takes X into x. Strictly

sp-king, the mapping Xt nas an inverse x I while x does not. Eimilarly, our
notation K ^xc 0 K stands for the relation =_XtooK involving the partial

mappings 11( and Qt. However, such a notational sistinetion leads to undue

rlinaginess in later equations of the prescnt paper.

ii1.



body, we write P=oK(g), P= X(oPt) and -6 = X(2 0oP,t), where b P is the

uoundary of the region 0 and b that of 6.

2.1 Notation and terminology

Before continuing with the kinematics, we mention some mathematical

terminology that will be needed in what follows. Any linear mapping from V,

the three dimensional translation vector space associated with the point space

C, into V will be called a second order tensor. The trace and determinant

functions are denoted respectively by tr and det. The transpose of a se-cond

order tensor A will be denoted AT, while the inverse of A if it exists will be

denoted by A -1 . The usual inner product on V is written a •b for any two

vectors a,bEV and the (induced) norm, or magnitude, of a is given by all= \Wa.a

The set of second order tensors can be provided with an inner product

A. B =tr(ATB) and a norm -IAI= AT for any second order tensors A and B. The

tensor product a b of any two vectors a,bEV is the second order tensor defined

by (a:b)u=b. - u a for every vector u. We recall the formulae tr(a b) = a- b,

(a9b)T=b®a and (a!Db)(c d)=b- c a®d=(a c)(b®d), (a®b) • (cgd) a. c b d,

which hold for all vectors a,b,c,d in V. The convention of summation over a

repeated Latin index will be employed, but summation will not be performed over

a repeated Greek index.

In order to express certain expressions in component form, it is convenient

to employ two fixed right-handed orthonormal bases and lei in V, the former

basis being used for vector fields defined on the region 6 and the latter for

vector fields defined on other regions. Thus, for example, we write X=X AeA and

x= x. e i (oe=1,2). Furthermore, a second order tensor A may be represented by

A e. :&e., AiM e ®e or AMN eM® N as appropriate, where A. =e" .A e.=
iji ~.j i I~ Nl M4 13P .J

A • (. ge.), etc. Any linear mapping from the set of second order tensors into
~I _j

itself is a fourth order tensor. In particular, the tensor product a&b c d

11.



of any four vectors a,b,c,dEV is a fourth order tensor. It is useful to

define an inner product of the fourth order tensor atb®c®d and the second

order tensor u~v, u,vEV, by (a&bc&d)[u&v] = c • u d. v a~b, which

yields a second order tensor. Any fourth order tensor (Q may be represented

as a=a. e ® ee®e e ®eL®eM e=1 - e, etc.,
- ijk , 1 i ;1,- -1 KLVnm a .-L 4A N= jKLe ~I j

where, for example, a. =e ake ®]e.=(e.oe.).Q[e ge I. The
3-j kk -,i '- ~1- -j ~- - - :.k

aT
transpose a of a fourth order tensor a is that unique fourth order tensor

with the property that B. a[A] =A. a T[B] for all second order tensors A,B.

Clearly, T (jI)T e. ®e& e. ® e
3. jkA:i- 4 kAiji ~1 -j 4c -,A

2.2 Kinematical and kinetical results associated with the motions (2.1)

Having disposed of the foregoing notational preliminaries, we return to

further consideration of kinematics. The deformation gradient F, associated

with the motion X, relative to X is defined by

F = -X (X,t) , J = det ( F) > 0 (2.2)
ce- -X ~aa

For the identity motion X, F=I and J=1. Being invertible, F possesses a

unique polar decomposition in the form

F= R U , (2.3)

where the (local) rotation R is a proper orthogonal second order tensor and

12.



the right stretch U i. a symmetric positive-definite second order tensor. Also,

the right Cauchy-Green measure of deformation C and the Lagrangian finite strin

tensor E are given by

C= U2 = FT , E=L(C-1) (2.4)
oi- at- a_ Of- 0a- a- -

We note that R = U= C= I and E= O. The relative displacement field associated
0- 0,, 0- - 0- -

with the motion X is the mapping 0 - °y, with the values

u ( X- x)(X,t) = x-X (2.5)
01 -O a-

and its gradient, namely

( x x
G (x,t) = F-I (2.6)

0 x - a - -

is called the displacement gradient. In the case of the identity motion, we

have u=o and G=O.
+

A motion X of (B is said to differ from by a superposed rigid body motion

(or simply by a rigid motion) if and only if

X+ (X, t+ ) = Q(t) x(X,t)+ a(t) , t + = t+ a (2.7)
at- - ( P a- a- W-- a Ot

for some proper orthogonal second order tensor-valued function Q(t) of time,

some vector-valued function a(t) of time, and some real constant a. The

configuration of 1, at time t in the motion X is K+ X o K. The class
+

of rigid motions of B consists of those motions X which differ from the
0-

identity motion oX by a rigid motion, being given by (2.7) with a= o. A

translation is a rigid motion whose rotation is I.

It is demonstrated in Appendix A that the statement "differs by a rigid

motion" is an equivalence relation on the set M of all motions of (. This

allows M to be partitioned into disjoint subsets (equivalence classes) each of

13.



which comprises all motions of B and ory those, which differ from one another

by ,i rigid motion. Thus, each equivalence clas2 comprises those motions of (B

which are regarded as mechanically indiatiniruishable. Thc equivalence class

which c;,ntains -11 motions that differ from a given motiur. x by a rigid mctiur

is denoted by K(X). For example, th. equivalence class K( x) contains the

tantire set of rigid motions if B.

We also recall frcm Appendix that an equiwtm(nce c1 i.: dutermin:i L'y

any one of its members. If, instead of a motion X, we begin with a motion 6

and place all the members of tt that are equivalent tu 8 ir, a clabs K(@), we find

that .(G) = K(X).

We may regard (2.() as defining a function w taking fl into rn such that for
+

fixed values of Q, a and a in (2.7) X =W( x).
a o W

The symmetric and skew-symmetric parts of G are defined by

T T
e (G+ G ), w G- (G (

respectively, and e= w=O since G=0. It follows from (2.4), (2.6) and (2.>
0. 0 .O

that

E = e+- GT  G (P.
CP W at- a-

Pecalling that tr GT G) =l G12 which equals zero if and only if it
a a- t0-

i clear from (2.9) and (2.6) that E= e if and only if F= I and hence if

and only if X is a translation.

From the deformation gradient F of X in (2.7) an- (2.?),aX of CV inO.71anp2.

we readily obtain

= j+(-F+

F+  Q(t) F , = det( = J > 0 (2.1))
OP- (r- t- of O- Of

14.



+ + + +

Then, using F to define, as in (2.3) and (2.4), the tensors F , U , C and
Ci- or l- a",

+

, it follows at once that

U U , C C , = E , = Rt) B ( 11
Q-. C)I- Cr- Op- al- at" CO- 0i- ci-

The relative displacement field associated with is u = (x- oX)(X, t+) and
Ck- or- 0- '-

its gradient is G+= F - I. HFnce, in view of (2.10)1 and (2.6),

G Q t) G+ t)-I ,

Cr- ce- CIP- OP-- -

so that G + is neither unaltered, nor unaltered, apart from orientation under
all-

all superposed rigid body motions of (B. Similarly, the symmetric and skew-
++ +

.Syuuetric parts of G , i.e., e and w are related to e and w in (2.8) by
ci- i- Op- all, ci

e+ = 2 e- Q(t)-I T (Q(t)-I]+ ( Q(t)-I G+ (( Q(t)-I] G)T

(2.13)
+ T )T

2 w = 2 wt Q(t)- (t) + Q(t)-I3 G- ( Q(t)-I) G
Qi- or, - Ci- CP- -ci- a*.- -

where use has been made of the identity (Q-I) T+ (Q-I) =- ( I (Q-i' for any

orthogonal tensor Q.

Since in the identity motion X F 1= oR= 0U= C=I while E= G e= w=0,
Se t 0 o 0 o0- 0- 0 ~

it follows from (2.7), (2.10), (2.11), (2.12) and (2.13) that in any rigid

motion, denoted for convenience by ox + we have 0oX~ +xt += Q(t)ox(Xt) +o0a(t)

and + +
F = R = Q(t)

0 0' O~

"+ U0 G+  Q(t)-I
0- 0- - 0 - 0 0 (

+ I T o
e - 2£oQ(t)-ITQ(t)-I ,

+  t T

15.



+
Clearly, by (2.14) 5  e =0 if and only if oQ(t) =I. Hence, the only rigid

+

motions for which the tensor e vanishes are the translations. It follows
0

from this that e is not invariant under arbitrary superposed rigid body

motions of (. For, if it were invariant, then it would equal zero for all

rigid motions of (B.

In the language of equivalence classes, if X and X+ belong to tne

same equivalence class, then (2.11)3 holds. As is well kmown, the

converse is also true. The finite strain tensor E can therefore be used to

characterize the strain of all motions in the equivalence class K( X). In

particular E=0 for all rigid motions, i.e., for the equivalence class K(oX).
* ~

In contrast, we have Just seen that e does not give the same value for all

motions in K( X); in pirticular, e is not zero for all motions in K(ox) but

only for the translations.

Let p be the mass density in the configuration K, b the body force

field per unit mass in the configuration K, n the outward unit normal to the
OP- (*-

surface b I' t the stress vector acting on this surface and aT the

associated Cauchy stress tensor. Then, in any motion X, from conservation
Q.-

lawo for mass, linear and angular momentum follow the results

op = P J ,

a T

t T n , T T (2.15)
0 - a"- a- a.- a.-

div T+ p b = p v
of C- Ot a~- oil-

In (2.15), div io the (right) divergence operator with respect to x, having
Ofa.

a component representation

OTij (.6

div T T ( iei -)e e. (2.16)
.x -

16.



and Qv is the particle velocity in the motion 0 and is given by

V --- X = X (2.17)
v (x t) ,t) ,

with a superposed dot signifying material time differentiation. For of= 0,

= v= 0. The unit normal n is carried by the motion X into n in

accordance with the formula

F-1 T n

(F -1 n0- (2.1b

the inverse of which is

FT n
n = W (2.1

il a F T tnl
+ +

Denoting the mass density in the configuration 0K+ by p and applying

(2.15)1 to the motion X + we obtain

+ +

o p = a +CJ (2.20)

and hence, in view of (2.10)2 and (2.15)1, we have

of p .
(2.21)

It follows from (2.18), (2.19) and (2.10)1 that under the transformations
++

(2.7), n is carried into n , the outward unit normal to P+, with
a*- W- ae

n Q(t) n (2.22,

We adopt the usual assumption that the stress vector t+ for the

+
motion X is related to t by

U- aV-

t : Q(t) t (2.23)
all- -.

17.



and it then follows with the aid of (2.15)2 and (2.22) that the Cauchy stress
++

tensor T+ in the motion is related to T by

T = Q(t) T QT (t) . (2.24)

+

The balance of linear momentum in the motion X is written as
a~

+ T+ b+ + .+

div +p = p v (2.25)
a of- 1 a- r or,

where
+

div + T+ e
a a- X+ -1

+ot J (2.26)
+

+ a X
v = *- (X, t +

ail t t+  - O

For later reference, we note that by (2.7)1, (2.16), (2.26), (2.21), (2.15)4

and (2.25),

+ +

div T Q(t) div T
Of O- a- a Op-

(2.27)
.+ b+
v - = t)( v- b)

W" a 1- a- a

2.3 Classical infinitesimal deformation

Having disposed of the above preliminaries, in the remainder of this

F:-cti,)n we discuss the main ingredients of the usual method of constructing

infinitesimal theories. The theory of infinitesimal elasticity is derived

from the finite theory by setting 1 X= 2 X=X and introducing as a measure of

smallnesc the nonnegative real function
t

e = c(t) = sup IG(X,t)Jl , (2.28)

XE R
-0

In the infinitesimal theory it suffices to consider two 
separate

motion: x and ox . Accordingly, in this case, we drop the subscripts 1,2

from quantities associated with X.

€The smoothness of X and the compactness of oR ensure the existence of
c(t'.



where sup stands for the supremum (or least upper bound) of a nonempty

bounded set of real numbers. If Z(G) is any vector- or tensor-valued functiun

of G defined in a neighborhood of G= 0 and satisfying the condition that there

exists a nonnegative real constant C such that iZ(G) <Cc n as e-0, thii wt,

write Z=0( t n) as c-0

Before proceeding further, we recall the following well-known result-:

(a) F-I = G = 0(c) , (b) F -I =-G+O(c2 ) 0(C)

(c) U-I = e+0O(c) 0(c) , (d) C-I= 2e+0O(c) = 0(C)

(2.29)

(e) E = e + ((c2  0(f) ( f) -lI -I +0(2) = 0(c),

(g) ° -I =w+O(c) °(2) , (h) R -I =-w+0(e ) 0(c)

As C-). In view of (2.29e) and (2.29g), e and w are referred to as the

infinitesimal strain tensor and infinitesimal rotation tensor, respectively.

For sufficiently small values of s, e approximates the finite strain E and

I +w approximates the finite rotation R.

Again in the notation of Appendix A, a motion eErl is said to differ from

a motion X by an infinitesimal rigid motion if and orly if

O(X,T) = {I+W(t))X(X,t)+d(t) , T = t+d (2.30)

for some skew-symmetric tensor-valued function W(t) of time, kome vector-

valued function d(t) of time and some real constant d. It is shown in

Appendix A that the statement "differs by an infinitesimal rigid motion" i,;

not an equivalence relation on M. It is further shown that if a motion e

differs from a motion X by a rigid motion, as well as by an infinitesimal

rigid motion, then e must differ from " by a translation in which case W =0

19.



in (2.30) and Q=I in (2.7). An infinitesimal rigid motion is a motion that

differs from the identity motion X by an infinitesimal rigid motion; and,

hence, is of the form

2(X, T) =[+ W (t)])X Fd (t) (2. 1)

We note that the determinant of the deformation gradient of the motion e in

(2.30) is equal to det(I+W(t))det F =(l+ 12l(t)ll2 )j>0, so that the condition

of the form (2.2)2 is satisfied. It follows from the result mentioned earlier

in this paragraph that the only motions in M that are both rigid and infinitesimal

rigid are the translations. We observe that the deformation gradient, displace-

ment gradient, finite strain tensor, infinitesimal strain and infinitesimal

rotation tensor associated with the infinitesimal rigid motion (2.31) are:

- +W(t) , G = W(t) E - W T(t)W(t)

(2. 2)

e 0 , w- W(t)

It follows from (2.14s) 3 ,4,(2.28) and (2.29e) that in any rigid motion the

infinitesimal strain tensor satisfies

e O(e 2 ) as e-O , (2.33)

with

S= l 0o(t) -ill • (2.34)

Furthermore, to within terms of 0( 2 ) as e-0, G is skew-symmetric and coincides

with w, in view tf (2.14)1, (2.29a,g) and (2.34). The relationship between

rigid motions and infinitesimal rigid motions is now apparent: the limit of a

rigid motion as e of (2.34) tends to zero is an infinitesimal rigid motion.

20.



Under superposed rigid body motions (2.7), from (2.11)3 and (2.9) follows

that

e + ) e+ G G.

and by applying (2.28) to both G and G+ we obtain

+ 2
e +0(c ) as e-0 (2.

i.e., if in every motion (incluiding the motions x in (2.7)) the norm jGil is
+

kept small, then e is approximately equal to e . However, if a finite rigid

oody motion is uperposzd on a small deformation, then e given by (2.28) ic

small while flG%+I computed from (2.12) need not be small. It is then clear

from (2.13)1 that

+ i( IT[
e = e- t) - I(Qt) - +0() as e- 0

21.



3. A _proL)erl invariant infinitesimal straini tensoir

i.1 Construction of the Trotion Cx

From among thc. particles of CB, let one denoted by Y and called apit

be chosen. Then, by (2.1), (2.2) and (2.3), we ilave

y - X(Y't) -~(Y't) ---R(Y't) U(Y,t),(.1

whreY y (Y). For any motion X we can construct a motion X TT( X~b
-. -- 0- a - a - - 0-

removing from X the translation and rotation at the pivot Y, while maintainintu

,:t all particles of S the stretch (and hence finite strain) experienced in thr-

moti on 0 X. In order to achieve this construction, it is necescsary and suf-

X (xI t R RT(Y,t)f X(X,t) - XYt3
(.2~

t =t c

where c is a seal constant. The conf igzuration of (B at time t in the moticon

X ic denoted by z X wc. In line with the notation of section 2, we

write P=X (P t )and P =X (~(,t )for the region and its boundary
a a- a1 af a- of

occuipied b-y any part %C-( in the motion X .It may be noted that application
0a-

of '.2 tu trie identity motion rezpriuducec the identity motion, i.e.,

Different choices >f the cons.-t1Ant c in (3.2) 2 merely result in a

r-parainetrization of X wit>% rtlp]Hced -by t pluis a consta-nt: an~d tLe cn

position x is reached, except pcssib~ly ear-lier -x later dependino- on th- v,!!,,

of thr, c0rstant c. -e ran ,ard nll- such parametri.-itioo; -- ccrrespo'nclin:, t.

jif ferer 0' ch-ice.s of c -- as r'-pj-es entin; the same nmotionl X
a a

TWe onserve that (3.2) is of the form (2.7) with Q(t)= R (Y,t'),

lThis wililibe matde clepr by (3l)and the remarks followinF it.
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Y, ) (,t) + y aInd i -c Conr tq-uently , X. navr4t

eauivailnce clas- XI i e., the claiss of mntions whiich difftr !rs x

Lyaricid mtihoq. .e now rtat,, and pro-.ve an easy

Thierem 3.1. wo motions IXand 2 x, of (B diffor oyarlrid mu-tilA. if'

a(nd only if 7 r or equivalently

irLuf: .*first prove the necessity. If 1X and 2X differ byariit

Fi t i. n, tl~on by (.)we have

JXX,t Qt )(-t + a t) t~ 4 F

i,-r rar rtgnltensi r-valued fuxactiun Q(t) of time, oome vectr-

a o> fr~l a. f time and somne constant a. in (2 .ll)4 i t f IlcI

a . a ~~) = ct) 0hXt;and, in particular , Ft tr;o picA

R (Y,t)+ Q(t) 2 RY,t)

a.plyian . to the motion 2X we obtain 2  (X)with

where we have chosen the parameter 2 c in (3.2),) to be zero. Again, ~ ~i

is ol-tained from (32,with a choice of 1 c = -a, so that

~x(X,t) = R(Y,t+ 1?x(X, t) +-?(, + +-

~x(X,t), .w

where i -. nd K2~have 1'ern used.

W~r,(a tl)rn t tO> uffici(-,ncy.? uppose



and denote the rotation tensors in the motions iX and 2x by lt and 2
R , respec-

tively. Then, it follows from (3.2) that

lx (x,t) = lR T (Y,t+ 1 c) [ X(x,t+l
c - 1X( Y,t+c ] +Y

*(Xt) = RT(Yt+2c) 2X(X t+c) - 2X(Y,t+ 2 c)) + .

for some constants 1c and 2c. Also, from (3.7) and (3.8) we have

iX(Xt+ic) = R(Y,t+lc) 2 RT(Yt+ 2 c) 2X(Xt+2 c)

+ l (Yt+lc )

- R(Yt+ c) R (y,t+ c) X(Y,t+ c)i I 2 2 2 2

which is of the form (3.3) with

a c- 2c ,

Q(t) = lt(Yt+ic-2 c)2R (Yt) (3.i-)

a(t) = 1 (_Yt+ic- 2 c) - l(Y,t- 1 c 2 c) 2 RT (Yt) 2 x(bt)

This completes the proof.

In the language of equivalence classes (see Appendix A), Theorem 3.1 may

D. stated as K( 2 if and only x). It is clear from

fieorem 3.1 that the function r-, defined on 11l through (3.2), maps every

motion in an equivalence class K(g) -- consisting of motions that differ from

by a rigid motion-- into the motion T =(e). Since e is itself , member

of the class K(O., we may write K(e )= K(e) and note that e can be us .d tu

ItLermine the equivalence class. Recalling the function ,w defined followint

we may write

2J4.



1TTO T

for every choice of Q, a and a in (2.7). The mapping TT extrartc fr,,yrn r,-

proper subset

n = (e)I£ErR) TT(M)

The notion of invariance under superposed rigid body motions implies that the

mechanical response of a body ( in the entire set of motions is completely

determined by its response in the subset h c r.

Recalling the definitions (2.2)1, (2.5) and (2.6), the deformation

gradient, the relative displacement and the displacement gradient in the

moti, n X are, respectively, given by

F a -- - (x, t

u x - x)(X, t ) = x -x , (3.12)
a 4- 0- - C1

G = F -I
or, aa-

Also, similar to (2.3), (2.4), (2.8) and (2.9), associated with the motion

X we have

T* * * 2* * 2
F = R U , C *(F) F =(u)

Q - a a.- a - Ci- a- Oe-

E* - = * * (3.13)a- : c-I) e*( G )T G* (.1

* G* * T a * a- * G* Te = -(G+(G) ) , w . - ))
a Q - a- ar 2C- a-

2ince (3.2) is of the form (2.7) with RT (y,t) playing the role of Q(t), it
ar-

follows from (2.10), (2.11) and (3.13) that

25.



F T RT(yt) F , J det( F ) J > 0
C1 a y 1c- ae

* * * . T (3.14)
U U , C = C , E = E , R T B(Yt) B

W' not,, that for the identity motion X , F R C U I and
0 o0 0- 0- 0- -

F = C = e = w =0.
0- 0- 0- O-

The position vector and rotation at the pivot Y, in the motion X by

(.2) and (3.14). are:
1 0

y X (Y, t Y R (Y, = i .15
a-_ a-- -a e of- - 01

whilie (3.14)3,5 show that for every particle of ( the stretch and finite

strain in the motion X retain the values they had in the motion X. It is

clear from the foregoing that (3.15) and (3.14)., are necessary conditions for

the validity of (3.2). It is easy to prove that they are also sufficient. In

this connection, we recall the well-known fact that a condition of the form

(3.14) for the stretch implies that the configuration K is related to K

by a rigid displacement, so that

x*(x, t*) = (t) x(x,t)+ a(t) , t = t+ a (3.1)
a- -a atO- ae-- aa a a

for some proper orthogonal tensor-valued function Q(t), some vector-valued

function a(t) and some real constant a. Consequently, applying the gradient

operator to (3.16)1 and evaluating the result at the pivot Y, we obtain

F(Y, t*) Q(t) F(Y,t) (3.17
a-- -a a-or a--

fhe=n, -ipplication of the polar decomposition theorem to (3.17) and use of

(3.14. results ir.

R_ (Y, t ) , (t) R(Y t) (.

at- -aO a- P--

'nd hence by (3.15) 2 we deduce

26.



c (t) = a Ty t ) 3.)
R (Y't) (."3

Next, substitution of (3.19) into (3.16)1 gives

X*X t*) = R T (yt) X(X't) + W-- 3.0

Oe Ce a - a- Ol-

and after imposing (3.15) 1 on (3.20), we have

a(t) = Y- RT(Y,t) X(Y,t) ,

sr' that X is of the form (3.2). This concludes the proof that (3.1) and

(3.14)3 are sufficient as well as necessary conditions for the validity of

Thus, the motion X can be obtained directly from X in accordance with
U- W-

(3.2) or indirectly by imposing the condition (3.15) and (3.14) 3, which are

equivalent to (3.2). The conditions (3.15) and (3.14)3 involve the idea

tnat the translation and rotation may be removed at a particle of the

body while maintaining the stretch (and finite strain) at all particles

For later reference, we record here certain results at the pivot Y,

namely

u (Y, ) = , (Y, t*) = u(Y,t) -I , w = 0 (3.22)
a#- - a a- C1 - a'- -

obtained with the use of (3.15), (3.14)1 ,3, (3.12)3 and (3.13)4,5.

It is important to note a property of the formula (3.2): Having obtained

X from X, if (3.2) is now applied to X itself no motion different from

X will emerge, since T(x) x by virtue of (3.15). Indeed for any

positive integer m

*
A similar idea has been often stated in the context of classical infinitesimal
elasticity; see, e.g., tne last few lines in section 18 of Love (1927).
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m

where stands for m applications of the function TT. This conclusion also

follows from Theorem 3.1 since X ,being a member of the equivalence class

K( X I, must be mapped into X

Invariance properties of the motion cLX

'onsider next the motions X and X in (2.7). It follows from (3.11)

itj~

+((T 0 (lW) ( X) = ( X) = X Ko2L

t :

)X,t) = { R (Y, t' aT(, t t~ +Y
X ( t- -) Y,- t + (-.

wit~i c chosen equal to a. Thus, according to (3.24), when a rigid body

.otiuri is s uperposed on a given motion X resulting in a motion X , by
a- X-

+ *
applying ('.L) to X we again arrive at X*•

:-y substituting X in (2.7)l, we can generate the equivalence

V which coincides with K( x) and K( X+). We note that

7(' X X or (( X ) = X , where ( )+ is the motion given by (2.7)

X is replaced by X , i.e., (X) =w(X ).

ii rIbsequent developments we need to have available explicit relation-

:Lips between various kinematical quantities calculated from the motions X
01-

4'
Y With the notations

_ ~ ( +* X ,+
F- ,t, , u = xt ) - X)(X't} , (B.2L)X,

e - - 0-

igwith diefiniions paralleling (3.13) for R 4- U4 
, C nd,

a~ 0-- a-- a~ CO-
w ,it follows at once from (3.24-) that

(,.-)ly, a lso follows directly from (3.25), (2.11) 4' (P.1 and !~u

iroieed thtse were the very equations which led (through Theorem 3-1) tu

28.
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= F , u = u , G = G

+ **
U U C C , E3.27)

__ a- Y all- Col- a-

R = R , e : e , w = w

We note that in the notation of (3.26)1, F+* denotes the gradient of the

motion ( X+)=( x+), while F = ( F*) in keeping with (2.10)1 stands for

the gradient of a motion ( X*) + which differs from X by a superposed rigiu
a'.- a'-

body motion. The significance of the results (3.27) lies in the fact that

while motions which differ from each other by a rigid motion (and thereby

belong to the same equivalence class),in general have different values for

G, e and w [see (2.12) and (2.13)], but have the same values for

G , e and w

It is worth making an observation here for the special case of rigid body

motions. Since for a rigid motion 0 =W( 0X), it follows from (3.11) and (3.2)

that

r( 1 X (r °1( W X) X ) = 3L

so that the entire equivalence class K( o) of rigid body motions is mapped into

the identity motion X. Consequently, the values of F , R , C , U , EGe

and w in any rigid motion coincide with the values of these fields in the

identity motion X. Thus,using the notations of (3.26) and (3.27), for any
0~

rigid motion:

+ * .

F = F =I , R R
On. On n. On. On. -

C * +. *
C = C =I , i = U =I

On On O. O~

(3.29)
**

= = 0 , G = G =0
0O-. O. - On. O.

+. * +* *
e = e =0 w = w =0
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The results in (3.29), especially the last two of (3.29), should be contrasted

with t., se in (2.14).

;<± now proceed to establish two theorems which are, respectively, the

eover"'es of' (3.27)6 and (3.27)8.

The ,rem 3.2. Let X and 2xE M and (X), (a = 1,2). If

1 (X,t+u 2E (Xt), where a is a real constant, then (i) 1X =X and

ii) ! and 2 differ by a rigid motion.

Proof. If iE(Xt+a) 2 '(X't), then tE(X,t+a) =2E(Xt)by (3.14) and

ii is obtained as a well-known result and then (i) follows by Theorem 3.1.
* *

Tn!oremn. 3.3. Let )(,2XEM and x =( x) (c=1,2). If le (X,t+a)= 2 e (x,t),

wre is a real constant, then (i) i? =2 x  and (ii) 1X and 2X differ by a

Pr of. Taking a component representation of (3.12) relative to the basis

F F e. 9e=-- (X, t*)e.e , (3.3"0)
0 iA i -A bX

where it -t+ a, 2 t :t, it follows from the smoothness properties of the motion

X tha t

F ~ F ,(3.1OfiA,B CiFiB,A(.3

wlhere ( ', stands for ( )/aXA. These are the compatibility conditions for

x<itn of the deformation gradient. Now put

V(X,t) = ViA e. A F * (X,t+a)- 2F (X,t) (3.32

V iA,B = iB,A (3.33

.'rthermure, decomposition of V into its symmetric part A and skew-symmetric

pirt 1', nmely A (V+VT) and B )(V-VT), when referred to the basis
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gives

BMN - M =(gi.ViN giNViM)

BMN = (giMViN- giNViM)

where giM=ei • M. Hence, by (3.33) and (3.34),

AKM,N ANK,M BMN,K

By hypothesis, le (X,t+a)= 2 e (X,t) and it follows from (3.13)5, (3.12) and

(3.32) that

VT =-V

and hence

A = 0, B = V . 337;

Moreover, in view of (3.35) and (3.37)1 ,

BlK o (3 .3..)
B,K 0

so that B is independent of X. Consequently, we may write (3.32) in the form

B(t) = 1F (X,t+a)-2F (X,t) , (3.?))

where (3.37) 2 has been used. Evaluating (3.39) at the pivot Y, it follows from

(3.13)1 and (3.15)2 that

B(t) = U (Y,t+a)-2 U (Yt) , (5.

so that BT(t)= B(t). But by definition BT(t)=-B(t) and we conclude that

B(t) = 0 (3.41)
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ith ti- help of (3.41) and ( .), integration of (3.3,)) yields

(X~4,9 )X'(X,t) +a (t)

whe!- :-W is some vector-valued function of time. Fvaluating, (3.42) at the

piv,'t Y ',nd invoking (3.15),, we conclude that

a(t) =o (j.43)

4ec-lling the remark on parametrization following (?.2), part (i) of the

t l.o-rem i proved and pArt (ii) follows immediately from part (i) and

Fh-.crem .i.

Jorollary .. 1. If e =0 in a motion X, then X ? and X is a rigid motion.

b prom: :Kmllw:' at once by setting 2= Xol and IX=X in Theorem 3.3.

in unticipation of our later use cf e as an infinitesimai strain

prr;i:<r;tng the finite strain tensor F , we need to make some observations

'c. r,2. First we recall that two essential properties of any satisfactory firi tem train

MH-:s ae 're t : (i) it should give the oame value for two motion. if and only if

t'ns. motions differ by a rigid motion (in this sense it can be used to

r~cterize all motions that belong to the same equivalence class); and (ii) with

i: oue -.- should be able to calculate exactly the change in lenoth of mlter'J~

in : oiven motion.

In view of Theorems 3.2 and 3.3, along with (3.27Y),, both E and e

'tis,,fv property (i). Also, the tensor sritisfies property (ii,, but, in

, doe. o !mt Indeed, we may deduce from K .1K thai. e if

r)p rty ii' impies property (i) but not con.-erely.
h-.! a. il infinitesimal strain tpnsor e in [or e i . e

", '!either 'i, nor (iir

+ hr,- parale].i that used inn(mImloly f. liowinr K.



and only if X is a rigid motion in which case both e and E are zero -;o
*~ tC

that cL e satisfies property (ii) only for a motion which is rigid.

Turning now to the kinetics, we denote by p the mass density in the

configuration K , b the body force per unit mass in K , n the outward
a.1 W-- a -

* *A
unit normal to the surface a O , t the stress vector on 1 P and

T the associated Cauchy stress tensor. Field equations of the form (2.15)

with an asterisk added then hold for the motion ccX Furthermore, recalling
m

that iHT(Y,t) in (3.2), plays the role of (Q(t) in (2.7), it foliow; fVrom

(2.2]), (2.22), (2.23), (2.24) and (2.27) that

A T T
P = p , n = (Y,t) n , t = (Y,t) t

T *= (,t) T R(Y,t)
a - al- W - -

(3.44)

div T = (Y,t) div T
CI 01 Op., - t ae-

"* * (Yt)( v- b)
a-- al- -

where div is the divergence operator with respect to position in the con-

figuration K and is defined in a manner paralleling (2.16).a-

Similarly, associated with the motion ( X+) * we have the quantities J+,

+* +* .+* +* +* +*
vn ,t , T and the operator div +

. Then, reriembtrin,
CIP ac- 5.a- a - 0-- t- aI

(3.27)1 and the conservation of mass, it follows that

J+ J , p . (-.4

Y CI a a

Also, with the help of (3.44) 2,3,4' (2.24) and (2.11)4, we obtain
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T 7 T~t ~)FfQ(t) R (y,t)) ~ )TQC)Qt R(Y,t) T
CI- - ~ W- a- --01- 0-

t t , -- n

'vitih the ustC of' (3.24), (3.46) and the balance of linear momentum, we also

div T+ div IT-

b( b
oil Vt , b

Properly invariant infinitesimal theory

Ithe next fsection, we construct an infinitesimal theory of motion."

--up-rn. :>t-d on any g-iven motion. This includes, as a special case, ar. inl'ir.itt' i-

t'ie-ry of mot.Lons, i.e., motions ,3uperposed on the identity motion _X.
0-

W:w-v-r, it is instructive at this stage to el-.aborate oriefly on the infinitesi-

1:he infinitesimal theory developed here is derived from the finite theory

<c lnsilnering as a measure of smallness (acssociated with the motion X, the

-i rel flinrcti .n

C C Sur ) , sup l xtf

I1. liiip,-rtaint to note that, in defining a measui~re of smalfint-ss, we do nut

2. sethe displacement gradient G in the motion X. Instead, we firzt

r5 i itf y, ir(x) and use the displacement gradient G in our definition

-his way, the same e is associated with e-very motion in the

i1 i2 cLs K(X) and the motion X is made tc) represent this entire

'!Ii ieIfinit--rimal theory as- well1. As in (2.2))' we, em readily

Ih ,jxpr-sslonc



(a) F -I G =0(C)

(c) U - + = +o((*) 2 ) o(*)

(d) C I 2e +e0((C*) 2 o(e*)

(- e O(( ' ) )C(

(e) E e +0((C)*) ) 2 ()*)

* *2

() - =w +0(( )) o( )
I W + (( * 2 o(*C

(h) (R )T I * + (() 2) = *)

S* E*

ase -. 2* In particular, we note that e is a linear approximation to E= E.

in view of this and the invariance condition (3.27)8 of e*, we refer to e as
U

.n invariant infinitesimal strain tensor. Likewise w is an invariant

infinitesimal rotation tensor.

Ccnsider any smooth curve C in R that joins Y to a given X. Let C be
0

parametrized by its irclength Sa 0 so chosen that S =0 at Y. The unit tangent

vector T( ) at a point R(S) on C is given by

dR
T(S,) = - (S) . (3.'. )

Denoting the value of S at X by L, we may, in view of (3.12), calculate the

displacement u (X,t) of the particle X in the configuration K by means of

the expression

u (X,t) = (Y,t) + G (R(S),t*)T(S)d,

0

0 (e(s ) ,t * ) d(S )d , 
( . ,I,)

is, the remark following the Corollary 3.1.
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* .ia*Luen use td. Then by the usual inequalities for iriteurals

z. 1. 7 fur all second order te nsors A aind all v-ctors a,

-i * 1 ,(eNf 1, it followsrom 5- (Q tha

-1 P~ H t T' )

-c>,t iiht f-1r every X in 0R, a smooth curve joining Y t-. X cm, bte

Kno-,tt, is fimite, it follows from ( ~)that

(x,t £ke ) £~K>

lo.2)w pfproxirnates X to within trsc!' a

T iaJ7:>, we note that it follows from (2.12) and (2.12 ) that

* =TT,
G R (y,t)c±I + kY 1,t) - I,(3 ;

2:=2e - ( (q,t) - T)[RT Y,t) - II

+ fR(Yt + + ( y.t)

[7T 2V T (, t i, t

now inakfe a comparison betwee-n t.he invariant infiritesithal stra in meaurext

* ,,'sual infinitesimal- measu.re e. :upposu, that e if. ~~C)is small 1'si

:r-'nt rira tients. T[hen, G sal,*tisfes

* (e) as e 0

!w.f 4-t rid



,j w Y,t ) (e ) = o(e) as e-.o , (-.

d,rived from (3.54) with the help of (2.29ah). It follows trom (3.55;,

:c'"ther with (2.29a ,h , that

' €2

e + e-O(C ) O(e) as e-u

€2
w =w -w(Y,t )+0(e = O(e) as e-0

ince the linearized G ,e and w were obtained by separate linearization
pr cudures., we observe that (3.27) is consistent with the sum of (3.5F,)l

2*

7.



4. An invariant theorvof small on la rge

W, ii-op liere in the erne, of :;ection 3, a )rup.rly irvari ih i !'i ,.:: -

-mil .hey' ) I, motions suwrjwe, a)n ) ; given motion arai he. ern; dIr th, '::,

ot -in ,IaLtic material.

- . t-nera results for motions superposed on a given motion

It is convenient to define the "difference motions" X and X by

= -I 2?o yjL (4.1)

-he., by '2.1) and 1 .2)

rrw aetkn c=~ ,ci 32 ota = (x t In, (4.I.

" cro-;ents e deformation whose superposition on 1X results in 2X. irilarly,

,:uperpo.iticn of x on a yields 2X

5-i 2pplication of' the chain ru.Le --f differentiation to (4.1), together

usef (2.2;, (3.121)1 (3.14)1,2, (2.18), (2.19) and t3.44) 2 leads t,

x-I
F' (1 x t) = 2 F F J' det(F') J >2 J/lJ

XX t J/l
* t'l = *- * det(F ,] 2j /]j '..

-- (4.-

( (F'; '-1 )Tin * ( (FL" ','-1 Tin

2-2-1,T
2n I (F ' ~ T n'!,  - - ((F'' -n ;

we introduce the diff, rence motion

+, + +-(

with the motions on the right-hand ride of (2.7) 1 • The -7dient f

r-ir piy , , (2. F

~32.



F+  + (L +- i T

F'-LLrther, considerin,- the difference motion

4 (2? + ) ((l +)*)-

wi; .e radient with resptct to> x is denoted by F , by (3.24), (h.,

.d (4.3 w. hove

X :X , F = F ,,
X X

VIcw the displacement field h of the configuration 2K relative to '

L = 2 l?. ' h(X t)= 2 x l (4.¢f

ior a fixed value of t , h*(X,t*) can be expressed as a function of ()x ,t )

in the form

h , ( #, t ) ( o ( i X  ) i t )

i X X 1 Xo (1x ) (1x t*)

let i function h at each time t be defined by

h =  h (ly ) ( .

r r.clling (4.1)2, from (4.8) 2 and (4.9), we obtain

,(y XX x ,')i *t** - lX- 4 ~X ,t) /( \f*-o- * - ) ,(.]

wor. is the identity mapping. on the region 1 f . We note that at the

" arrrnt p(-rition of the pivot

r1n vwrtjr is used tu dictinniish between this mapping and the identity

' ti A , X.

39.
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oh(1y ,t ) a~ (4,.12)

(3.1%) I . By (4.11), (4.3)3 and (4.10), the relative displacement frrdiont uf

with re;pect to namely

tie -radient of h with respect to X are given by

* S -  ' H F F (4.i4
2 L iL2 - I F -I , 1- I 2 F

:i, te difference 2E -i of strains, with the help of (3.13)2,3 and

if of the form

F~~~ H (FT T + HTIH)F* ) 4 . i

'D:ie. displacement field h associated with the motions (x+) { (ce 1,2) is

drxfine1 in a m.nner paralleling (4.8). Thus,

':2 (2+)_ -(l)* , h+*(X't) :( x + )* ix + )  41

,uEn, in view of (3.24) and (4.8)1)

h = h (41Y

iJ. i. Y. '--iirit rr our present purpose to express b (XtI) as -t functior Ii+

+ +, +* 1

h Yot (( x ) ) t

-+

...: .r.'4. )h:; r--i wed rind whe-re de-notes the identity m~pinP i n th

r . R ...." R ' " , t I n s p e c t i . n 3 f ' (n2 ] 4 1 ) , ( > 1" n d ( . .

4n.

L (4.iE .



+ 1 "

;<,, it, vicw f (3.24), X X. It now follows from (4.13) ird (4.1), tu,,t

the rltive displacement iradient Hi+ , namely

+ h+

+

+

H -H (4.'J

4. Results for an elastic material

'Now consider the body B to be composed of an elastic material . Thu,, I-t

te the elastic strain energy per unit mass in the configuration K.
+ *

I rtherraore, let e and G denote the strain energy per unit mass in thue

+ *- +
c :nfii iurations K and K , respectively. We assume that + = £ and it

the>n f hlows that e . A nonlinearly elastic solid may be characterized
a ai

iy tl-e constitutive equation

I' A TA T
T p FCDe( E)+ D ( E))F

01 ea- a - Qa-

A
where e = C(E) and the notation Dc( E) stands for the derivative of theA DTA( A T(
ftnction e at the point E, while D e( E) = (De( E) We observe that in view

a- (V- Ot-

f (2.1)1, (2.11)3 and (2.21) the value T+ of the stress tensor given by
+

r4.?22 for the motion X satisfies (2.24), so that (4.22) is a properly
a)k

invari,,ant constitirdve equation. The Cauchy stress T in the motion X
0a- or-

the f,rm

T p F[DEA( ExF )DA( )I ')\ (..

a- a at- a- Qa- a-Q~

%nd we jubserve that (3.46) 1 is satisfied. To continue the discussion, let 1

,n ariaitrary known motion o~f S and X? some general notion. Having constriicted

f[-M'ticnsc l and Z' we employ as our measure of smallness associated with

B3y an elastic material we mean a Green elastic material for which a potential
Pulnct'iori E is assumed to exist. In this subsection, the symbol E is employeti

r2atlict,h ela.s tie a I nil a energy ,E , as well a,; the, qiuant itc, X f + :LrT.

* A,* T

Ind we L not, tha t 4 eotisu with the us of for a fferdi si. ,urj t
I i, m,,tirta anth 2a, emp.oy in ours. (2.'r) and Ws.s9) with'l 11w l

S(l , 2 anI , aewhe rf, in subsection 4.2.



iand OX the nonnegative real function

C (t )  sup Jlll(1x  3:sp fl(),t~ )jl . :

I..liowing the same line of reasoning that led to (3 it may u  .

(4.1-)) and (4.24) that

hx,t )=0(e) as C€ 04

with trie use of the polar decomposition of F ', i.e.,

F*' F U'

and UL are proper orthogonal and symetric positiv deiirit- t h2srL, 1.: pi,-

til.,1 , w- obtain estimates for various kinematical qu.ntitie..':

-I H = 0(e) , (b) (F,)-I F- Hu(,

• + T  -2 1 {+ T-

* I(( 2O O(e) , (d) (U ')1  I - ( T

th e p i 2t end invoke (4.24) and ( ). , to (P ain

2 A ( ,-A T + T + *-
() ) F () .s e-- ,

,A A A

.her- T .(I ) iz the second derivative of C at ]. •Recalli -_ thu definit J,,

A thu, transpose if a fourth order tensor, we note the symmetry conditicn

2.



(D D 2  A * 2 A(
( DALCDCD CAbh(F) ,.

Awhich fPllws from the assumcd smoothness of C. With regard to the relation-

ship between tht mass densities p and 2 p , from (2.15)1, (3.14)2, C44)],

(4.3)- ind (4.14) it may be deduced that,, 4

2 1 p det(I+H)1 = 1 p t-tr H+0( )] as -(4.)

J'thstitution of (4.28) and (4.30) into (4.23), with cts2, Ind U.I.- Uf '4.11,

t-,cetier with (4.23), with o'=i, leads to the approxiiwmtion

2T  (1 -trH)IT +I T1 F [(F T )1]+H ( '

where terms of O(e ) as e-0 have been omitted. The fourth order tensor

h -h A eC &e e 8) C:& is defined by*

2 A 2 A 2 A * 2 A

)r2 E + ( )+ D eE)+ D (E (4. "<hABCD DABCDe(1l )+DABDC (lE BACD 1 BADC(1 )].

In view of (4.29) and (4.32), K possesses the symmetries

KABCD = BIACD = "ABDC = "CDAB " 4 .i*)

We now proceed tc show that the expression (4.31) is unaltered when, in accordzunce

with the transformations (2.7), rigid body motions are superposed on X resulting

+ 
-+

in the motions X . First, defining X in a manner analogous to that in which

K was defined by (4.32), we observe that , =. Using (4.31), the stress tens-r

+" in the motion (2±) is given by:

*Due to the symmetry cf the term in square brackets in (4.28), it is only the part

12 A 2 A
)()2 1 . + D A AC CF) that contributes to the expression.
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L + * +)T + +T
(1-tr 1) TZ + T (H +H T

+- F T T + X T T)T
2  1 I F K[( I) (h+ + )lF() F

wilere (4.2(") has been used along with equations (3.46), (3.44) and (3.27)I

.ith y -1. Therefore, by (4.34), the transformation property (3.46)I with a 2
*I

i :atizfied when ,T is given by (4.31), so that (4.31) is a prorprly invariant

-xpres'ion. The significance of (4.34) is that the relation (4.31) trans-

V rms correctly when arbitrary finite rigid motions are superposed indepen-

f .enty 'and possibly simultaneously) on both X and X.

in order to derive an expression for the traction vector Lt , we note y

4. t" i i, th

*0- i + • (H+H) 1+( ) as +0.

pq hence by (4.3),

I 31n H n + r(,- ) as e

t 4HiIj filow. from (3.44) 123
'' rh~ roiow:: rom(3.4),2,3' (2.15), (4.?1) nnd (4.3>) thi t when terna: 14

:r, . .itted

t = ( - r i{+ ."

1~ ~ ~ F 0 1 +i jj--

1'.r~It-. nf +.h st.cir4. I-i1 ~i;;.~: *i

*. , inra:'fat rn+. infini t ima1 sii

,, 14



Then, c iarly

1 , 1 P  (4.3')

ilhc :trew', tensor in the motion X x is obtained from (4.22) with F.- I,

,d is ,ivt,. uy

A TA
p~D( + CO)l 4*

:L i,:m in: ti str s; -fr,, - .r i. t ffi ,Lr tticn <, we take

i I , (4.41)

: nd 1krce' uy .4)

T : Y (4 42

In keeping with (4.33)2 we suppress the subscript 2 in all quantities associated

with the motion A= ,. Thus 2. becomes X , 2F becomes F , etc. Then, by

(4.1), (4.38)1 and (4.39)2 , we have

X : , 0 ,.43x

since-: X X. Furthermore, by (4.3)3 and (4.39)3,

F*'= F(4.44)

From (4.8)i, (4.39) 2 and (3.12)2 we obtain

h (X't) (x*- x)(X,t*) : u (44.4:
~ 0- ~

we see from (4.44), (4.14)1 and (3.12) 3 that
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1i - F -I - . ( .4

r.,,'q,,atly e it, (4.24) becomes equaL t-, c / I n view of (4.i "d

L .thet tt.!nsor [ defined in (4.32)_ )ecom < Y(, wher-

AA 2 A
AB D C ()_

A BCD 4tABCD( ) +A P)CD(O +DED 'L DAD(I€ ' ]  '

th,. :'-ame quintity that appearr in equation (1 . i w it , t. . 1;'-1 '

(4.47), (4.46) and (3.13)4, specilizinv (4.31; w, lo,.

ta*-: desired constitutive equation for linearly elastic solid, which wdis

rocurded e'.rlier (see Lq. (1.13)). Having been obtained as a special ma_

(4.12 , clearly (1.13) is properly invariant under the transformatian (2.()

with oez 2 suppressed. Alternatively, the invariance of (1.13) can be

e.statlished at once from (3.27)8. It is then seen that (3.4 6 )i, with a=2

suppressed, is satisfied when T is given by (1.13).

;iext we- obtain an expression for the traction vectort = 2t . First, by

(L .5: ', (4.39)2,3 and (2.18) we note that

n : (4.4' )

-t tniun follows from (4.36), (4.46) and (3.13)4 that

n =2 (1+ 0n e n) n- (G C (4.

wrr,, terms of O(e- ) or equivalently of 0((*) 2 ) have been omitted. Now it

Siw:: trrn (4.42), together with (2.15) in the form iL IT 1n, that

,.*:. t, *elp f (4.39)3,4) (4.46), (3.13)4' (4.40), (4.5C)) and recalin7 that

t h it follows from (4.37) that

t p [e n n !*..I
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This expression agrees with that derived from (1.13) and (4.149) when terms of'

Oe are omitted.

To complete the infinitesimal theory of motions superposed on a given

motion, it is necessary to insert (4.31) in the equations of motion written

in terms of the quantities appearing on the right-hand side of (34) , and

to express all quantities in terms of the variable

147.



<. Consequence of a change of pivot

It is evident that the motion X depends on the choice of pivot. In

this section,we examine how cur results behave when one particle Y' is chcs,,n

fvr pivot rather than another Y. We temporarily attach a subscript Y to

quantities associated with the motion X introduced in (3.2). In a manner

paralleling (3.2), we define a motion Xy =y, 1 ( X) associated with the pivot

Y' as follows T:

X = X= ,T(Yt)( x,t)- x(Y't)3 + ,(,t7 / - (P.i

' (Y') being the position vector of the particle Y' in the referunce

configuration K. The deformation gradient F , in the motion (5.1) satisfies

the relations

F , T (Y',t) F = R F , (5.2)

where

R T(y,t) R(Y',t) = R (Y,t)
t.- at- - o-c-

is the rctation at the particle Y' in the motion Xy, and where use has been

made of (.14)I 1,. We may, as in (3.13) and (3.12), define tensors a R

E , G e , and w , associated with the motion, X '. It is

then readily seen that

tWe could replace t = t y of (3.2)2 by ty,, with t and t,, differing from

one another by a constant, but in view of our remark (following (3.2)) on

parameterization, we take tY'= Oy= t .
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- ,Y I A U , E - I

Cr - - Ot

*f - - T -)

2 w 1  2 w + R - IB+ ( R -Ij ~G-([ -I) G)

As,1.'t p ,b- the maso density in the configuration K 1  'I K:n
" L Y

tii, Q'n-uchy strtss tensor associittd with the motion ,Xi,. Then,

T -'T R (Y ',t) T R(Y',t) R T y B

whe-rte 344 > a:.d (3) hav~- been used.

It follows from (3.49h) and (: .3) that

* *
B - 4 ( O(C as ey-

U- y- Y y y

;n %V!eW of .) .,

G, G-w.Q 26' 0(Ce)

W~ W, - -Y 2 C ~

xIr'" ith when v' i, chosen aspivo-t, the irfiniteE'im
2'

* i. f~r. r c,, c~incid,-,s with e- curepondirt h pivAt Y) V

~49.
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Ii R -t 0-C

P" -Y i- Y y

-ext we obstrve that (3-13)1, ( 4 .1 4 ) 1 Lind (4.24) lead to, the

( -1)( *)
2 (j < -lT TT

Y Y li'y1+ Y I +1 1I + 1 P

ir Ti v bewzell ill trw or:>

LlA ,Y 2 _11

wh1ert, 'j is a skew-syr'rmetri c unct' C1, at (C h y~

Vplaces i further restrict a Q n Y , aol

T ~ ~ Tr ~ ~-
( +SpY- y 2 ; - 1-. -

Si o 5.o)and (1), may express 2 Y in the form

U (I+ ' T Y+HT - *1 1* + -, ' a

'rtrrirein view of (3.13)1Y (4.14)11 (5.16) and (4.21-e)

T - =

aptrethe notation

f unctionr. ni-y b rte asa linear function of 1L. t is nut difficult.1
Sthat 'y r~~ xiv, t . I ic unique.

Iprticiler. ift 1,7.1 implies that 'T=0.
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y tY (y,t ,

v.'(YY') == ' (H(yt) - T '( ,t -WT = ~( i )a -

it f.1lows from (5.1)) nd (5.3) that

2 = {j+W(YY')]i5+°(e ) as ey- 0

, by (5.14) and (4.27e),

I + -- T T - 2y
2 -+Y H (Y ]y +0(Ce) as e£ -0.

rici ilr, it is clear from (5.20) and (5.22) that

Rt (y,t) I R (,t )+ 0() : I+O(C ) as e, -0 '.7

!:ext, wc return to (5.11) and make use of (5.21) to obtain the

fcllowing estimates for Hy,, its symmetric and skew-symmetric parts and f~r

=~, ,) - = (y' "=]D+(

-4_JT 1, -2
F £F W(YY +0(.O(E:

- '  1 C - YT, _-T T - -2)

7I 1 is used es a pivot,then the stress tensor 2T is given by (4.31i)

2Y

(wttr. ' ,ubscript Y attached to all quantities) while if Y' is used, Ts
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Y,H , y

+- T *T

+( 2 ) as y,".O , (v.2)
Y

where y is defined similar to that in (4.32). We now proceed to

s:iw that (,.25) implies (4.31). To this end, we first note

tfr~m (4.32) and (5.4) 3 that }y, =hy and also recall from (5.24) that HLy, ij vf

c ,) so that the error term in (5.25) is of O(y). Then,with the use. of (5)

we deduce from (5.25) chat

1 (1 t =- tr HR R

+* - T -'

2 ~ 1Y 1- tY' X (), :,

+ T RH LYF ly 2

2 Y2 1L y I _i( Y,~+-"')lY( ) 2t

as ey.0

whee ~.2) ias been noted in writing the error term. With the help of (").214),

<.21) and (5.2) it is readily seen that

trY, tr Hy +0(C

R F =T+w~y,( ~ -2)

- U 2



es -.0. Substituting the latter results in the appropriate term of (.6

we find that

(1 - tr1 1 1 -t Y

- TZ w(yy')+oeY

2 -LT - T -* T -2w

**Y( *Ty T* -1

T (1 -tr H )TI T
2zY ;- elzY + -,Y z

+ l~.y Hy

+ -L ** F[ )T(H+*F]T

+ O(C) as (5.2

whiich was to be shown.
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Appendix A

This appendix provides certain mathematical developments concerning

equivalence relations and equivalence classes (used in sections 2 and 3),

which pertain to the procedure employed in the construction of invariant

infinitesimal theories. In particular, we discuss the two relations "differs

-y a rigid motion" and "differs by an infinitesimal rigid motion."

Theorem A.I. The relation -= "differs by a rigid motion" defined int (2.7) i,,

an equivalence relation on M, i.e.,

(a) X -X for every X EM (Reflexivity).

) If X, Em and X- (, then e-x (Symetry).

(c) if X,0,E M and X-0, ,-, then X - (Transitivity).

Proof:

(a) X(X,t+O) =I X(X,t) +0, so that (2.7) is satisfied with the choices

Q(t) =I, a(t) = O, a = O.

(b) If X-e, then X(X,t+a) =q(t)G(X,t) +a(t) by (2.7). Hence,

B(X,T+b) = P(T)X(X,T) +b(T) with T=t- b, b=-a, P(T) =QT(t),

b(T)=-Q T(t)a(t) so that a X.

(c) If x- and 0-, then X(X,t+a)=Q(t)>(X,t)+a(t),
+

(X,t) =P(t-b)e(X,t-b)+b(t-b) with Q,P E (9+ the set of proper

orthogonal tensors and a,b constants. Hence, X(XT+c)= S(T)6(X, )+C(T)

with r=t-b, c= b+a, S(T)=Q(t)P(T) ES+, c(T) =Q(t)b(T) +a(t), so that

The set K(X) = [0 E Ml is called the equivalence class of X in the

equivalence relation ~ and any member of it is called a representative of K(X).

We recall the standard results

tWe -,uppress the index a in this appendix.

ee, fur example, van der Waerden (1970, P. 10).
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(i K(X) = K(O) if and only if X - 8

(ii) U K(X) =r
XE, n

(iii) K(X) / K(9) implies K(X) n- K(G) = .

Thus all the motions in M which are equivalent to one another (i.e., differ

from one another by a rigid motion) and are regarded as being mechanically

indistinguishable, belong to the same equivalence class. Clearly, an equiva-

lence class is determined by any one of its members: if instead of X, we beqin

wi.th the motion e and place all the members of M that are equivalent to e in the --amt!

-1],ss we arrive at a class K(@) which is identical to K(X). Furthermore, the

zquivalence classes cover tR,and distinct equivalence classes are disjoint.

We mrny therefore partition M into disjoint subsets, each of which contains all

those motions, and those only, which differ from one another by a rigid motion.

As was pointed out in section 2, since the Lagrangian finite strain tensor

L remains unaltered under superposed rigid body motions, it may be used

to characterize the equivalence classes of M. Adopting the convenient

notation E(X,t ; x) for the Lagrangian strain at X and t in the motion X, we

record the following

Theorem A2. For any @,XEM, a-X if and only if E(X,t+a ; e) = E(X,t ; X) for

some constant a. The necessity part of the proof follows innediately from (2.U)

:,nd (2.7), while (as remarked in the proof of Theorem 3.2) the sufficiency part

is well known.

In view of Theorem A2, and the result (i) noted above, we may state
Theorem Aj . For ny XEM, K(X) = K(9) if and only if E(X,t ;X) F(X,t+ ' 8)

for some constant a. In fact, we may now say that the relation "e has the same

Lagrangian finite strain as X" is an equivalence relation on Mf which gencrates

the same partition as the equivalence relation -.

Next, recalling the definition of E in (2.4) 2 we observe at oncp
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Theorem A4. Thet t ,r-ugian finite strain tensor has a value zero for the

identity mutiun, i.e., L(Xt X) = 0.

We may u.e Theorems A2 and A4 to show that the value E = 0 characterizes

th - equivalence class of' rigid motions:

Theorem A. X EtM is a rigid motion if and only if E(X,t ; X) = 0 (for all

(. ,t ) ).

iruoi: if X is rigid then X- X and hence by Theorems A2 and A4, -,(X,t ; x

Conversely, if E(X,t ; X) = 0, then E(X,t =E(Xt ; X) by Theorem A4 and Hence

by Theorem A2, X- X so that X is rigid.

We have employed the formula (2.4)2 in the proofs of Theorems A2 and A4.

Alternatively, we could characterize the notion of strain in a rather general

way by assuming that our strain measure satisfies Theorem A2 . The strain

associated with the class of rigid motions would then be some constant (tensor),

not necessarily zero. The tensors C and U in (2.4) satisfy theorems paralleling

Theorems A2 and A4 with both these tensors having a value I for the class of rigid

motions. From the foregoing theorems and remarks, it is evident that an

essential feature of the notion of strain is that it characterizes an entire

class of motions rather than simply a motion. In particular, the Lagrangian

strain tensor E defined in (2.4)2 characterizes equivalence, classes consistinFg

of motions that differ from one another by a rigid motion and which are r-,,t-,rded

as being mechanically equivalent.

Turning next to the infinitesimal strain tensor e= e(X,t ;X) in the motion

X, which is defined by (2.8)1, and the relation "differs by an infinieim,]

rigid motion" we establish the following three results of interest:

f course, it would not be possible without other assumptions to relate such a
concept of strain to the change in length of material line elements. While
this mty appear strange, we remark that in the theory of elastic-plastic
materials a tensor called plastic strain appears, which only by introducini-
,an addition assumption can be related to the (permanent) change in length 3f
line elements.
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Theorem AU. The relation "ni ffe rs by a:. infiteitesirmt.] r i i m i ,. ,

'in -quivilence relation on tTn.

)f. While the relation satisfies the refle xivity property, it I'!,, i" t

:-ti fy Lith the symmetry and transitivity propertit-F Af an tquivilec, r, ,-

ti r,. Tc eLaborate, let 8EM differ from XErr uy on irnfinitk ,imal r irid r.ti _..

lioel, (2.30) hold and X(X,t) = (I+W(t)-1 ((Xj)-d(t)). ii' x wer: i, liffer

f'. 9)m 9 Dy an infinitesimal rigid motion, then it would be possible to t:xpr,,o

t aE the sum of I and a skew-symmetric tensor and it wc-ud tfet, foliow

that tr([ -,A (t)r-) = O. However, tr((I+W(t)]- -I) = tr( I+W(t) - 2w
- 2W(t)" -

where W(t) 2 ) e3 - e3 el)

" m.( 5- eland w2 = w 2 + + 2 2 =I (t)12. Therefore

tr(iW(t)]-l-I) =0 implies W(t) =0. Since e can be chosen with W(t) 0, it

follo.ws that the symmetry property does not hold. That the transitivity

properey does not hold may be shown by observing that for any two skew-

:'nnretric tensors W and W , tr((IW )(I+W )-I] = trl ] - • o wh

-nd , are the axial vectors of W and W respectively. Since W rnd W,, can

hc chosen so that w.- is non-zero [e.g., W =W 0] it follows that the

prC.luct (I+W )(I+W ) cannot always be expressed as the sum of I and a skew----1 -- _?

-:,mmtric tensor.

Ii i- clar from the definition (2.30) that if P differs from Y b'y

'r1 infinitesimal rigid motion, then the displacement gradient Ii = --- I of 9

With resppect to position x= X(Xt) in the motion X is skew-symmetric and the

" ci-ited infinitesimal strain !(H+H) is zero.

t,-fore proceeding further, we recall that in the finite theory, one io

'.nc' rn-d with a set of motions which differs from a given motion X by rigid

. ti~n~. iTn contrast, in the infinitesimal theory one is concerned with n -ft



of motions which differ from X by infinitesimal rigid motions. It is natural

to ask to what extent these two sets overlap, the answer to which is contained

inH

Theorem A7. if a motion 6 EM differs from X EM by a rigid motion and if it

also differs from X by an infinitesimal rigid motion, then e must differ from

X only by translation.

Proof. Let e differ from X by a rigid motion and separately consider a dif-

fering from X by an infinitesimal rigid motion. Then, from (2.7) and (2.30),

we have Q(t-a)=T+W(t-b) for some proper orthogonal Q, skew-symmetric t% ard

real constants a,b. Taking the determinant of both sides of the latter equ:-

2
tior,, and recalling that det(Q(t-a)J-, detkI+W(t-b)) =I + -I(t-b)JI , yields

W(t-b) l= 0 and hence W(t-b) =O, Q(t-a) =I. Consequently, e(X,t+a) =x(X,t) +a(t),

i.:., 8 differs from X only by translation.

By setting X 0 X in Theorem A7, it follows at once that the only motions

which are both rigid and infinitesimal rigid are the translations, i.e.,

O(X,t+a) = oX(X,t)+ a(t). In view of Theorem A7, the equivalence class K(X)

and the set of motions that differ from X by an infinitesimal rigid motion have

non-empty intersection comprising those motions which differ from motions in

:(X) by a translation, but neither of the two is a subset of the other. In

particular, the set K(o ) of rigid motions and the set of infinitesimal rigid

motions intersect in the set of translations, but neither of the two sets

contains the other.

As noted in (2.32), the infinitesimal strain tensor e vanishes in an

infinitesimal rigid motion; the converse is well known and may be proved by a

simpler version of the argument used in the proof of Theorem 3.3. It was shown

following (2.9) that E(X,t ; X) = e(X,t ; x) if and only if X is a translation.

More generally, we can prove the following
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ihorem AK 2uppose X, BE M and X -. Then, th followirng three statemnts are

qovut I ) ij(X't Vj X e(X t 9 ); ( x,t) x' (X't) -* a (t)

tJ Xi XX, t) L (t); (3) F(X,t+a ; X) = e(X,t ; e) 0, where Q is proper

r, ::, i :, , are vectors and a is a real constant.

1'. iiw t follcws, it will be shown that (1) implies (2), (2) impli,<

3 nd (i) Jmplies 41). 9y Theorem A2, X - implies E(X,t+, ;x) K(>,t :
9T 56 . ...-

, + (X,t ) I] (X,t) - I, where a formula, cf the type (2.2, 6
:sei. If E(Xtio X) e(X,t ; 6), then I (X,t) - -nd = nd h

i. Consequently e(X,t= X(X,t) +a(t) and X(X,t- ,)(i .
- V

-..' :l ; (:. Sta.tement (3) then follows at once.hie',.. ,'t~t,:o:.I

f i)ws trivially from (3).

',. immediate corollary of Theorem A8 is that the only ridi n. tir- i, r

wi" are the translations. (This was shown by a dlfr'.,tro 0 r 1 ,

C' Ii wia.,- ,*2.141.I

ni,osific nce of Theorem Ao is that the infir:itesiam, -tra " "

.. o :'rast to the finite strain tensor E, cannot be usd t c,-ract r: .

-ance classes 5(X) of th. The usual method of c,:nstruclr, infi:it. inn9

I r'., wich involves the use of e as a strain measure, *Itr:;,:: th po,'

Sru t.;r.. n:nsist~n.; of the partition of T,, into disjoint set.:: of mtio: toat

'r frm one another by a rigid motion. If the infiniteim l theurics ",r -

invarirant uder arbitrary superposed rigid body motiors, this specal 1

'.trur'tur-e must be preserved. The method introduced in section ) dcen pr. -rv,

ic ,,' ture.

- the -ontext of this appendix, our construction of an invariait

ttirji teory may be viewed as follows: By means of tzh. inaippil" , , ,

n. rticuilar member X is singled out to represent the Atire c]:::

<:"/. in. the ir , itr.,.imal therry. The invariant infinitesimal strain

X, I Xl' in the motion X is defined tr, be the usual infinitesinvl str'li.

I ]



tensor evaluated for the motion X , i.e., e*(xt X "e(Xt i-(x)) Fy

Theorem 3.2, this construction preserves the structure induced by rR by tht

equivalence relation "differs by a rigid motion" and hence the infinitesimal

strain measure e may be used to characterize the equivalence classes K(X)

in M. In particular, the entire class of rigid motions is characterized by

e =0.
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